Monday 16 December 2013

Parallels to universal Darwinism

Alex Mesoudi's recent book was titled: Cultural Evolution: How Darwinian Theory Can Explain Human Culture and Synthesize the Social Sciences.

However in Universal Darwinism, evolutionary theory also applies to physics, chemistry and computer science. This expanded scope of Darwinian explanation means that it has the potential to unify all the sciences - extending even beyond the physical laws of our universe into the realms of mathematics.

Parallels seem inevitable. Statistics also penetrates all branches of science. Thermodynamics (in the form of statistical mechanics) describes processes that aren't confined to universes with physics like ours. Universal Darwinism is a lot like statistical mechanics. Another case that springs to mind is complexity theory. Complexity theory deals with systems on an abstract level. Systems theory and cybernetics have similar potential for generality. Computer science and mathematics are also very general. Let's list these items as follows:

  • Mathematics;
  • Statistics;
  • Computer science;
  • Systems theory;
  • Complexity theory;
  • Statistical mechanics;
  • Cybernetics;
Conventionally, Universal Darwinism describes a set of processes. It doesn't seem as broad as mathematics, statistics or computer science (which are pretty process agnostic). However, its precise scope has yet to be fully elucidated. Some argue for a very general version of Darwinism that applies to all non-miraculous change. Such an expansive conception of Darwinism would put it on the same level as computer science - which studies computable processes.

However, overall, statistical mechanics looks like the best parallel to me.

In the 1930s Fisher noted resemblances between some aspects of population genetics and statistical mechanics, writing:

It will be noticed that the fundamental theorem proved above bears some remarkable resemblances to the second law of thermodynamics. Both are properties of populations, or aggregates, true irrespective of the nature of the units which compose them; both are statistical laws; each requires the constant increase of a measurable quantity, in the one case the entropy of a physical system and in the other the fitness, measured by m, of a biological population.

For me, that pretty-much captures the spirit of universal Darwinism.

Universal Darwinism seems to be in the process of being born into a storm of controversy. Complexity theory offers the nearest parallel here, I think - but the advent of complexity theory seems like a relatively mild revolution - in comparison to the one that universal Darwinism heralds.

No comments:

Post a Comment